Maximal Empty Boxes Amidst Random Points

نویسندگان

  • Adrian Dumitrescu
  • Minghui Jiang
چکیده

We show that the expected number of maximal empty axis-parallel boxes amidst n random points in the unit hypercube [0, 1] in R is (1±o(1)) (2d−2)! (d−1)! n ln d−1 n, if d is fixed. This estimate is relevant for analyzing the performance of exact algorithms for computing the largest empty axis-parallel box amidst n given points in an axis-parallel box R, especially the algorithms that proceed by examining all maximal empty boxes. Our method for bounding the expected number of maximal empty boxes also shows that the expected number of maximal empty orthants determined by n random points in R is (1 ± o(1)) ln n, if d is fixed. This estimate is related to the expected number of maximal (or minimal) points amidst random points, and has application to algorithms for colored orthogonal range counting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Maximum Empty Boxes Amidst n Points

We revisit the following problem (along with its higher dimensional variant): Given a set S of n points inside an axis-parallel rectangle U in the plane, find a maximum-area axis-parallel sub-rectangle that is contained in U but contains no points of S. 1. We prove that the number of maximum-area empty rectangles amidst n points in the plane is O(n logn 2α(n)), where α(n) is the extremely slowl...

متن کامل

On the number of maximum empty boxes

We revisit the following problem (along with its higher dimensional variant): Given a set S of n points inside an axis-parallel rectangle U in the plane, find a maximum-area axis-parallel sub-rectangle that is contained in U but contains no points of S. (I) We prove that the number of maximum-area empty rectangles amidst n points in the plane is O(n log n 2), where α(n) is the extremely slowly ...

متن کامل

Perfect vector sets, properly overlapping partitions, and largest empty box

We revisit the following problem (along with its higher dimensional variant): Given a set S of n points inside an axis-parallel rectangle U in the plane, find a maximum-area axis-parallel sub-rectangle that is contained in U but contains no points of S. (I) We present an algorithm that finds a large empty box amidst n points in [0, 1]: a box whose volume is at least log d 4(n+log d) can be comp...

متن کامل

On the size of the largest empty box amidst a point set

The problem of finding the largest empty axis-parallel box amidst a point configuration is a classical problem in computational complexity theory. It is known that the volume of the largest empty box is of asymptotic order 1/n for n → ∞ and fixed dimension d. However, it is natural to assume that the volume of the largest empty box increases as d gets larger. In the present paper we prove that ...

متن کامل

Largest Empty Axis-Parallel Rectangular Annulus

In Euclidean plane, a rectangular annulus is the region between parallel rectangles such that the smaller rectangle lies wholly inside the outer rectangle. Given a set P of n points in the two dimensional plane, we propose O(n) time and O(n) space algorithm to identify an axis-parallel largest empty annulus amidst the points of P . We are not aware of any published work on this problem. To the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012